Experience in offering a clinical pharmacokinetic service for epilepsy management and the measurement of health outcomes

Praneet Valodia

Executive manager: Innovation and Development, ICON Extraordinary professor, School of Pharmacy, UWC

BACKGROUND

Non-linear pharmacokinetics

- Perception of inferiority to original

-Ancient drug

STUDY

The determination and validation of population pharmacokinetic parameters of phenytoin in adult epileptic patients in the Western Cape using nonlinear mixed-effects modeling.

Needed blood samples of phenytoin for PK modelling.

Clinical pharmacokinetic consulting service for phenytoin

8 clinics per week - 2 years

CLINICAL PHARMACOKINETIC SERVICE

Referral by attending doctor Demographic data Concurrent medicines Duration of treatment History of seizures and frequency Description of seizures Alcohol and smoking Admission to hospital Toxicity

Seizure diary Compliance checks Counselling – missed doses Tablet counts Time to Steady state calculation Blood phenytoin samples Determination of Vm and Km Calculation of dose Prediction of new PHT conc. Report to doctor Phenytoin toxicity – withdraw Oral loading dose

Phenytoin kinetics

$$Vm = \frac{S.F.R}{Cp_{ss}}Km + S.F.R$$

$$Km = \frac{R_2 - R_1}{\frac{R_1}{Cp_{ss1}} - \frac{R_2}{Cp_{ss2}}}$$

$$R = \frac{Vm \ x \ Cp_{ss} \ x \ \tau}{(Km + \ Cp_{ss})(S)(F)}$$

$$Cp_{ss} = \frac{Km + (S)(F)(R)}{Vm - (S)(F)(R)}$$

Phenytoin kinetics

$$t_{90\%} = \frac{Km \times Vd}{(Vm - S.F.R)^2} \times (2.303Vm - 0.9S.F.R)$$

$LD = Vd (CP_{desired} - CP_{achieved})$

Phenytoin Kinetics

- Therapeutic range: 40-80 μmol/l
- Collect serum PHT conc at steady-state
- Time to steady-state 5 days to 6 weeks
- Daily dose should not exceed individual's Vm
- Trough concentration
- Following a change in PHT dose, the time required to reach a new steady-state concentration should be determined.
- Total PHT concentration assumes normal protein binding

Phenytoin Kinetics

- Withdraw phenytoin over few weeks
- Upward adjustment of phenytoin dose after 5 -12 month due to auto-induction.
- Phenytoin sodium and Phenytoin acid
- Re-optimized after change in brand
- Delay blood sample if compliance is suboptimal
- Ensure compliance before increasing dose

Phenytoin kinetics

- If patient has seizures at the time corresponding to the trough serum concentration, seizure frequency may be decreased by shortening the dosage interval without necessarily changing the daily dose.
- Transient symptoms of toxicity associated with high peak concentration may be avoided by decreasing the dose and shortening the dosing interval, without necessarily having to alter the daily dose.

Pre-Post intervention: phenytoin

P. Valodia et al, Benefits of a clinical pharmacokinetic service in optimizing phenytoin use in the Western Cape. SAMJ.1998,88:873-875

TOTAL NUMBER OF SEIZURES EXPERIENCED DURING THE FIRST AND SECOND BASELINE PERIODS AND THE TEST PERIOD (195 PATIENTS)

PERIOD	NUMBER OF SEIZURES
First baseline	667
Second baseline	588
Test period	216

P. Valodia et al, Benefits of a clinical pharmacokinetic service in optimizing phenytoin use in the Western Cape. SAMJ.1998,88:873-875

NDEPENDENT CLINICAI

MEAN SEIZURE FREQUENCY PER MONTH FOR SPECIFIC PERIODS BEFORE AND AFTER THE INITIATION OF THE STUDY (195 PATIENTS)

PERIOD	SEIZURE FREQUENCY PER MONTH		
	Mean	Range	
First baseline	3.62	0 - 48	
Second baseline	3.15	0 – 29	
Test period	1.18	0- 16	

P. Valodia et al, Benefits of a clinical pharmacokinetic service in optimizing phenytoin use in the Western Cape. SAMJ.1998,88:873-875

PERCENTAGE REDUCTION IN SEIZURES

Period	% reduction in seizures
	n = 195
Based on first baseline period	66,4
Based on second baseline period	63,2
Based on the average of first and second baseline periods	64,8

ADVERSE EFFECTS

	% patients	
First visit	20,5%	
Last visit	3,2 %	

DOSE ADJUSTMENTS

	% patients	
	n = 332	
Dose increased	31,9	
Dose decreased	15,1	
No change in dose	53,0	
Dose adjusted	47,0	

Relationship between therapeutic concentration of phenytoin and the percentage of patients optimized at that concentration range.

Therapeutic conc (µmol/l)	% Patients	
	n = 171	
0,0 - 19	0,0	
20 – 39	17,0	
40 – 59	31,2	
60 – 79	30,7	
80 – 99	10,9	
100- 119	8,6	
120 - 139	1,6	

$$Cp_{ss} = -\frac{1}{2} \left[\left(\frac{Vm}{Cl} + Km - \frac{R}{Cl} \right) - \sqrt{\left(\frac{Vm}{Cl} + Km - \frac{R}{Cl} \right)^2 + \frac{4.R.Km}{Cl}} \right]$$

$$Vm = (\theta_1 * WT * \theta_3) RACE^* SMK^* ALC^* SEX^* AGE^* EXPn_1$$

Where RACE = θ_4 if coloured, otherwise = 1 SMK = θ_5 if smoker, otherwise = 1 ALC = θ_8 if drinker, otherwise = 1 SEX = θ_9 if male, otherwise = 1 AGE = θ_{10} if ≥ 65 years, otherwise = 1

$Km = \theta_2^* \text{ RACE }^* \text{ AGE }^* \text{ EXP} n_2$

where RACE = θ_7 if coloured, otherwise = 1 AGE = θ_{11} if ≥ 65 years, otherwise = 1

 $Cl = \theta_{11} * \text{EXP}n_3$

COST SAVINGS

	Price (per month)	Claims (2008)	Total cost
Epanutin	R 234	12018	R 2,8 m
Phenytoin sod	R 53	1965	R 0,1 m
Savings			R 2,2 m

Measuring the value of clinical pharmacy services

Methods to measure value

- Health outcomes
- Benchmarking
- Return on investment
- Trend analysis (using moving average)
- Claims cost versus inflation over time (year to year)
- Other: Total population approach, survival analysis

Definition: Health Outcomes

A scientific discipline that evaluates the effect of health care interventions on patient-related, if not patient specific, economic, clinical and humanistic outcomes

ISPOR BOOK OF TERMS

Difference = Outcome

Value of clinical pharmacy service

PRE-AND POST INTERVENTION

Population vs Individual Health Outcomes Assessment

Asthma: Health Outcomes

Clinical

- Categorization of uncontrolled, partially control and controlled patients
- Frequency of symptoms
- Severity of symptoms
- Number of symptoms
- Number of asthma attacks
- Number of emergency room visits.
- Number of asthma related hospital days
- Number of nebulisations
- Number GP consults
- Number specialists consults

Economic

- Savings due to reduced hospitalizations
- Savings due to reduced emergency room visits
- Savings due to decrease hospital nebulisations
- Savings due to decrease in consultation costs
- Savings due to decrease specialist visits
- Savings due to increased productivity (less absenteeism)

Humanistic

- Improved quality of life
- Improved patient satisfaction
- Improved compliance
- Improved understanding of inhaler use
- Improved understanding of personal treatment plan
- Improved ability to use as peak flow meter
- Smoking cessation
- Avoidance of trigger
 factors
- Increase use of a spacer device when required

Challenges with measuring health outcomes

- Definition of health outcomes
- Careful planning of data collection
- Availability of good baseline information
- Selection bias
- Missing data points
- Validation of ICD10 and CPT codes
- Matching of control groups
- Regression to the mean
- Clinical and statistical differences
- Inter- and intra-scheme variability

Challenges

- A priori specification of confounding variables
- Interpretation denominator effect, RTTM
- Development of questionnaires sensitive to changes over time
- Integration and automation of all systems
- Development of intelligent health systems
- Disease specific clinical measurement
- Not all information is extractable
- Develop impactibility models

Way forward

- Continually measure the effectiveness of the work of clinical pharmacists to make an impact.
- Implement a phased approach

