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Summary: This study was conducted to assess whether the parallel Michaelis-Menten
and first-order elimination (MM+FO) model fitted the data better than the Michaelis-
Menten (MM) model, and to validate the MM+FO model and its parameter estimates.
The models were fitted to 853 steady state dose : serum concentration pairs obtained
in 332 adults with epilepsy using nonlinear mixed-effects modeling (NONMEM). The
MM+FO model fitted the data better than the MM model. The validity of the phar-
macokinetic models and the estimated population parameter values was tested using
the naive prediction method. The estimation and validation of the pharmacokinetic
parameters were undertaken in two separate patient groups (cross-validation) obtained
2 by splitting the data set. Patients were randomly allocated to two equally matched
3 groups (groups 1 and 2). The predictive performance was assessed using 770 paired
predicted versus actual dose or measured serum concentrations. The population phar-
macokinetic parameters estimated by NONMEM in group 1 were validated in group 2
and vice versa. When predicting steady state serum concentration, the MM+FO model
was clearly superior to the MM model (mean bias of 0.91 and 8.13 mg/L, respectively).
Key Words: Phenytoin—Population pharmacokinetic parameters—Validation—

Linear clearance,

The pharmacokinetics of phenytoin are complicated
by the nonlinearity in the dose-serum concentration re-
lationship, which is a consequence of capacity-limited
metabolism. A small increase in dose can result in a
disproportionate increase in serum phenytoin concentra-
tion and vice versa (1). Drugs exhibiting nonlinear ki-
netics are likely to have at least a small parallel first-
- order pathway. An appropriate expression for the rate of
\ phenytoin elimination should therefore also include

~ clearance for the first-order (linear) pathway (2). An
€quation which takes parallel Michaelis-Menten metabo-
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lism and first-order kinetics of phenytoin into account
has been described (2,3).

A first-order pathway which is only 1% to 2% of the
maximum clearance at low concentrations can signifi-
cantly influence steady state concentration when serum
concentrations are high (2). At rates of administration
approaching the maximum metabolic rate (Vm), renal
elimination of unchanged phenytoin can significantly in-
fluence the steady state serum phenytoin concentration
(3). Although the population pharmacokinetic param-
eters for the parallel Michaelis-Menten and first-order
elimination (MM+FO) model have recently been re-
ported (4), to our knowledge, this model has not been
validated in patients taking phenytoin routinely. Most
methods that have been used to predict phenytoin dose or
serum concentration have traditionally taken into ac-
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count Vm and K values only. Therefore a model which
includes linear clearance should predict phenytoin dose
Or serum concentration more accurately.

This study was conducted to assess whether the
MM+FO model provides a better fit to the phenytoin
data than the Michaelis-Menten (MM) model (i.e.,
whether a linear pathway is present in parallel to a non-

linear pathway in the elimination of phenytoin). The sec- -

ond objective was to ascertain whether including a linear
pathway results in a meaningful improvement in the pre-
diction of the dose—concentration relationship.

Black refers to indigenous people of South Africa who
speak one of the Bantu languages as their home lan-
guage. Colored refers to people considered to be of
mixed race, classified as such by the previous apartheid
government of South Africa.

METHODS
Patients

The study population comprised 332 (149 black and
183 colored) adults with epilepsy residing in the Western
Cape, South Africa. Of these, 226 were male and 106
female. The mean age was 36.4 + 14.1 years (range,
15-82 years). All patients were receiving phenytoin
monotherapy for epilepsy. The total daily dose of phe-
nytoin was 310 = 64.9 mg/d (range 100 to 500 mg/d).
Phenytoin was prescribed in 91.0%, 7.1%, and 1.9% of
patients once, twice, or thrice daily, respectively. Of the
patients, 37.3% were taking other medicines concur-
rently with phenytoin. None of these medicines taken
concurrently are known to interfere with phenytoin phar-
macokinetics. Of the patients taking other medicines, the
most frequently prescribed was paracetamol in 38%. Of
the patients, 49.7% smoked cigarettes. There was no he-
patic or renal disease or history of alcohol or drug abuse.
Informed written consent was obtained from each pa-
tient. Patients were recruited at 9 epilepsy clinics. Com-
pliance was assessed by patient interview, tablet counts,
correct completion of the patient’s diary, and variation
between two measured serial serum phenytoin concen-
trations taken at different times on the same dose. A
variation of 20% or less was regarded as acceptable.

Serum Phenytoin Samples

If the patient was compliant and the serum phenytoin
concentration was assumed to be at steady state, a request
form for blood collection was completed. Steady state
was assumed 1 month after dosing was started or after a
change in dose (5). Total serum phenytoin concentrations
were measured with a fluorescence polarization immu-
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noassay using an automated TDxFLx system (Abbott
Laboratories, Diagnostic Division, Chicago, IL, USA).

Pharmacokinetic Models

A one-compartment model with either Michaelis-
Menten or parallel Michaelis-Menten and first-order
elimination was used.

Structural Model S1 (Michaelis-Menten Model
With Dose as the Dependent Variable)

In this model, dose rather than steady state serum phe-
nytoin concentration was chosen as the dependent vari-
able to ensure stability during data fitting (6). This model
was represented as follows:

ij X Cp s5if
Y7 Km;+ Cpogy

where R;; (mg/day) is the ;th dosing rate of phenytoin
predicted to achieve the ;th Cpy, (mg/L) in the ;th patient;
Vm; and Km; are the maximum metabolic rate (mg/day)
and Michaelis-Menten constant (mg/L) of phenytoin, re-
spectively, in the jth patient and Cp,y; is the steady state
serum phenytoin concentration measured in the ;th pa-
tient receiving dosage R;;. Vm; and Km; are assumed to
be constant over time for an individual patient, but may
differ between patients (7-9). The MM model was used
for comparison with the MM+FO model.

Structural Model S2 (Michaelis-Menten and
First-Order Elimination Model With Dose as the
Dependent Variable)

This model was represented as follows (2):

_ Vm; X Cpys

i ij + Cp + (C'I; X Cp.:srj)

s5ij

where Cl; is the linear clearance (L/d) of phenytoin for
the ;th patient.

Structural Model S3 (Michaelis-Menten and
First-Order Elimination Model With Steady State
Serum Concentration as the Dependent Variable)

This model was represented as follows (2,3):

R oo fa o - ke
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The derivation of this equation has been described (3).
Our equation differed from that of Ludden et al (3) in that
linear clearance (Cl) was substituted for the product of
Vd (volume of distribution) and K, (first-order elimina-
tion rate constant).

Structural Model S4 (Michaelis-Menten Model
With Steady State Serum Concentration as the
Dependent Variable)

Km;x R;;
CPssi =Y, ~R,

The predictive performance of model S4 was com-
pared with that of S3 to indicate the importance of Cl in
the latter.

Parameter Models

The parameter models applied with the structural
models were as follows:

Vm = (8, * WT + 8;)RACE*SMK*AGE*EXPn,
Km = 92 ® EXPT]Z
Cl = 0, * EXPn,

where

RACE = 8, if colored, otherwise = 1

SMK = 6 if smoker, otherwise = 1

AGE = 0, if = 65 years, otherwise = 1
where 7, T, and m; were assumed to represent random
normally distributed terms with zero means and vari-
ances (w”;, w’,, w3 respectively). The development of
the models and the influence of covariates have been
described (4). An additive error model was used for the
residual variability.

NONMEM Data Analysis

Double precision NONMEM version IIT level 1.2 and
version IV level 1.0 (NONMEM Project Group, Univer-
sity of California, San Francisco, CA, USA) were used in
this study.

The MM and the MM+FO models were fitted to 853
steady state dose : serum concentration pairs. When com-
paring models S1 and S2, a difference in the minimum
objective function (DOBF) of more than 3.8 indicated
statistical significance (p < 0.05, assuming x? distribu-
tion) in the improvement or worsening of the fit of the
model to the data when the restricted model had one
regression parameter less than the full model, i.e., one
degree of freedom (10). Model S3 predicted steady state
serum concentration and therefore the minimum objec-
tive function (MOF) values obtained with models S1 and

S2 that predicted dose could not be compared with those
obtained with model S3. The importance of Cl in model
S3 was evaluated using a variation of a method described
by Sheiner et al (11).

The first-order conditional estimation (FOCE) method
was used to obtain population parameter estimates for
the validation procedure. It is expected that this approach
would reduce bias in parameter estimates because the
approximate marginal moments may be closer to the true
moments (12). The FOCE method is an iterative proce-
dure that involves multiple, sequential estimation of in-
dividual parameters, then population parameters, then in-
dividual parameters etc., until convergence is achieved
for the population values.

Validation of Structural Models and Population
Pharmacokinetic Parameters

The validity of the pharmacokinetic models and the
estimated population parameter values was tested using
the naive prediction method (13), which uses the mean
population estimates of Vm, Km, and Cl but no patient-
specific phenytoin concentration data. The covariates
(race, smoking status, and age younger than 65 years or
65 years and older) previously found to influence Vm
were included in the model (4). This allowed the testing
of the best model that we have developed. The naive
prediction method was used as it is a method one could
most likely use in an outpatient practice prior to obtain-
ing serum concentrations of a drug in the patient con-
cerned. The predictions of dose or steady state serum
concentrations obtained with the mean population esti-
mates were compared. For models S1 and S2, the es-
timated population parameters (obtained from the
NONMEM outputs and calculated from the parameter
models) were used to predict the dose of phenytoin that
would achieve the measured concentration. For models
S3 and S4, the estimated population parameters were
used to predict the steady state serum concentration that
would be achieved when a particular dosing rate was
administered. The estimates of Vm and Km obtained
with model S1 were used in model S4 for predictions
because NONMEM was unable to fit the latter model
where Cp,, is used as the dependent variable. A similar
problem was experienced by Miller et al (14).

A data-splitting technique was used for validation
(cross-validation). The full data set (332 patients) was
used to develop the population models as described (4).
To minimize possible bias in favor of the model by pre-
dicting dose or serum concentrations for patients whose
data were used for the estimation of the population pa-
rameters, the estimation and validation of the pharmaco-
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kinetic parameters were undertaken in two separate pa-
tient groups (cross-validation) obtained by splitting the
data set. Eighty-one patients producing only one steady
state serum concentration on a single dose of phenytoin
were excluded from the analysis to rule out the possibil-
ity of noncompliance influencing the predictive perfor-
mances of the models. The remaining 251 patients were
randomly allocated to two equally matched groups (1
and 2), stratified according to the factors (race, smoking
status, and age less than 65 years or 65 years and older)
known to influence the pharmacokinetics of phenytoin
(4). The predictive performance was assessed using 770
(388 and 382 in groups 1 and 2, respectively) paired
predicted versus actual dose or measured serum concen-
trations obtained in the 251 (126 and 125 in groups 1 and
2 respectively) patients. The population pharmacokinetic
parameters estimated by NONMEM in group 1 were
validated in group 2 and vice versa. Prediction error
analysis involved the calculation of the mean prediction
error (MPE) and the root mean squared error (RMSE)
(15). The MPE described the bias and RMSE the preci-
sion of the model with its associated population esti-
mates in predicting the actual dose or serum phenytoin
concentration. The 95% confidence intervals (CI) about
the MPE and RMSE for each model were constructed
(16). The predictive performance of our models and the
associated parameters was compared with the MM
model using the estimates (Vm = 7.22 mg/kg/d and Km
= 4.44 mg/L) obtained by Vozeh et al (6). These esti-
mates were previously widely used in our clinical prac-
tice for the calculation of phenytoin dose and prediction
of steady state serum concentration.

Ranking the methods only on the basis of bias and
precision does not always predict their ranking in respect
of superiority of clinical use. For this reason, our study
also examined the relative frequencies of satisfactory
predictions. The ability to predict a dose or steady state
serum concentration with precision within 10% of the
actual dose or within 20% of measured serum concen-
tration was tested for the various models. The percentage
of underpredictions and overpredictions of dose or
steady state serum concentrations was also assessed.

RESULTS

The MOF values obtained with model S1 were com-
pared with those obtained with model S2. Model S2 fit-
ted the data significantly better than model S1, as re-
flected by a decrease in the MOF and a DOBF of
2922.524 (p < 0.0005). The results suggest that linear
clearance is important in model S2.

To illustrate the importance of Cl in model S3, the
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MOF was used to construct the 95% confidence interval
for the Cl estimate by evaluating the MOF associated
with a change in the Cl value. The value of Cl was fixed
at values greater than or less than the mean population Cl
value of 2.68 L/h derived from the model which fitted the
data best. The Cl values were plotted against the corre-
sponding MOF values. Where a horizontal line corre-
sponding to a DOBF of 3.8 (measured from the lowest
MOF value on the graph) intersects the graph the corre-
sponding Cl values were read off. The Cl values of 1.49
and 3.89 L/d represent the approximate lower and upper
limits of the 95% confidence interval of the Cl estimate,
respectively. As the lower limit of the confidence inter-
val was observed well before the Cl value approached
zero, the importance of Cl in the model is confirmed.

The average parameter estimates for models 51, 82,
and S3 obtained for groups 1 and 2 are presented in Table
1. The predictive performances of the 4 structural models
using the mean population estimates were compared.
Tables 2 and 3 present the MPE and RMSE obtained
with each model and their associated population esti-
mates. The combined results are reported for groups 1
and 2. A confidence interval (2.32—4.2 mg/day) for the
difference in the predictions of S1 and S2 did not include
the value zero, indicating that the two models behave
differently. Similarly, the confidence interval (2.3-8.3
mg/L) for the difference in predictions comparing mod-
els $3 and S4 did not include zero, indicating that these
two models also behaved differently from each other.
The predictions of phenytoin dose or steady state serum
phenytoin concentrations obtained with the MM model
using the estimates obtained by Vozeh et al (6) are re-
ported in Tables 4 and 5, respectively

DISCUSSION

Models S1 and S2 underpredicted the phenytoin dose
by an average of 1.32 and 3.73 mg/d, respectively (Table
2), and model S3 was found to overpredict phenytoin
concentration by an average of 0.91 mg/L (Table 3). This

TABLE 1. Average parameter estimates for Groups 1 and 2
obtained for models S1, S2 and §3

Parameter estimates (% SE)

Parameter S1 S2 83
0, 2.56(13.4) 1.88 (13.68) 2.91(11.15)
0, 4.72 (6.96) 1.96 (19.4) 7.31(10.08)
N 238 (8.8) 194 (15.1) 228 (24.83)
By 1.05(1.81) 1.07 (2.15) 1.07 (2.84)
i 1.09 (1.80) 1.06 (2.08) 1.09 (2.94)
b — 2.07(13.4) 2.14 (31.07)
64 0.83 (1.76) 0.81 (1.96) 0.96 (7.95)
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TABLE 2. Predictive performance evaluation of models

TABLE 4. Performance evaluation of the Michaelis-Menten

S1 and 82 model (51) to predict phenytoin dose
Models n 770
MPE (mg/day) 315

S1 s2 MPE (%) 11.4
n 770 770 RMSE (%) 26.05
MPE (mg/day) -1.32 -3.73 95% CI of BIAS (mg/day) 30.33-40.67
MPE (%) -0.43 12 Does the 95% CI of BIAS include zero? No
RMSE (%) 17.58 16.86 95% CI of RMSE 79.56-82.28
95% CI of BIAS (mg/day) -5.26-2.6 -7.33—0.11

Does the 95% CI of BIAS
include zero? Yes No
95% CI of RMSE 53.96-55.52 51.75-53.25

MPE, mean prediction error; RMSE, root mean squared error; CI,
confidence interval; dose, steady-state serum phenytoin concentration
pairs.

was remarkable for a pharmacokinetic analysis where a
number of variables can influence the results and where
a naive feedback method is used. The MPEs obtained
with models S1, 82, and S3 were all considered accept-
able (Tables 2 and 3). The predictions obtained with
model S1 were unbiased, as reflected by the 95% confi-
dence interval, which included zero (Table 2). Predic-
tions with model S2 were biased. However, when the
groups were analyzed separately, groups 1 and 2 for
models S1 and S2 were unbiased. Only group 1 predic-
tions obtained with model S3 were unbiased. This is
possible because the width of the CI decreases as the
sample size increases. The width of the 95% CI for MPE
did not differ much between models S1 and S2 (Table 2).
All predictions lacked precision as the 95% CI for RMSE
did not include zero.

No significant difference between the frequency of
underprediction and overprediction of dose was found
when comparing models S1 and S2. There was a trend
towards conservative predictions, i.e., underpredictions

TABLE 3. Predictive performance evaluation of models

53 and 54
Models
53 S4

n 770 750
MPE (mg/L) 091 8.13
MPE (%) 5.67 52
RMSE (%) 64.78 3385
95% CI of BIAS (mg/L) 0.27-1.55 4.39-11.87
Does the 95% CI of BIAS

include zero? No No
95% CI of RMSE 10.23-10.52 52.14-53.62
No. of predictions excluded 20
No. of unrealistic predictions

=75 mg/l 25

MPE, mean prediction error; RMSE, root mean squared error; CI,
confidence interval.

MPE, mean prediction of error; RMSE, root mean squared error; CI,
confidence interval.
* Using the estimates of Vm and Km obtained by Vozeh et al. (1981)

of dose. This is an important attribute for a phenytoin
dosing method because even a small overdosage may
lead to substantial toxicity. The percentage of prediction
errors greater than 10% did not differ substantially be-
tween models S1 and S2. Using the latter models, on
average 43.7% of predictions had errors less than 10%.
Although model S2 fitted the data better than model S1,
the results showed that Cl was unimportant when pre-
dicting the dose, as the percentage bias (% MPE) did not
improve when Cl was incorporated in the model (Table
2). No significant difference was found between the ac-
tual and predicted doses for models S1 (p = 0.64) and
S2 (p =-0.153).

Model S4 was used in this study so that the prediction
performance of model S3 could be compared. Model S4
tended to overpredict the steady state serum concentra-
tion—a % MPE of 52%. When linear clearance was
taken into account (model S3), the % MPE decreased to
5.67% (Table 3), reflecting an 89.1% reduction. The pre-
cision of the prediction improved markedly when Cl was
included, from 338.5% for model S4 to 64.78% for
model S3 (Table 3). Model S3 tended to overpredict the
Cp,, (54.3%) more than model S4 (49.5%). This was
considered satisfactory. When model S4 was used, 20
patients were excluded (Table 3) because predictions
could not be made as the predicted Vm value for the
population was probably too low in relation to the dose

TABLE 5. Performance evaluation of the Michaelis-Menten
model (54) to predict serum phenytoin concentration

n 753
MPE (mg/L) 3.78
MPE (%) 23.88
RMSE (%) 457.53
95% CI of BIAS (mg/L) -2.05-9.61
Does the 95% CI of BIAS include zero? Yes

95% CI of RMSE 80.78-83.17

MPE, mean prediction of error; RMSE, root mean squared error; CI,
confidence interval.
* Using estimates of Vm and Km obtained by Vozeh et al. (1981).
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administered to the individual patient. This resulted in
unrealistic predicted steady state serum concentration
values. In this case, the equation yielded a negative value
for the steady state concentration. This would have af-
fected the analyses of bias and precision (17). Given that
there is an interindividual variability in Vm, some pa-
tients may require doses that exceed the mean value for
Vm in the population. A statistical difference between
the measured and predicted concentrations was found
with model $4 (p = 3.06 x 107). With model S3, a
statistical difference was not found (p = 0.0502). When
interpreting the results, one should take into consider-
ation that 20 dose : serum concentration pairs had to be
removed from the data set when model S4 was used. The
results clearly indicate that Cl in model S3 was important
when predicting steady state serum concentrations, be-
cause the % MPE was much lower when clearance was
incorporated in the model. Model S3 should therefore be
used in preference to model S4.

Despite the acceptable MPEs, the precision of the pre-
dictions was poor. Whereas this is trivial for most other
drugs, it may be significant in the case of phenytoin
because of the Michaelis-Menten characteristics of the
drug (18). The majority of the predictions of dose were
underpredictions, which minimized the risk of poten-
tially toxic dosages. Because of the poor precision, the 3
models (S1, S2, and S3) evaluated in this study should be
applied with caution when predicting dose or serum con-
centration. Such a finding is not surprising in view of the
considerable variability associated with the clearance of
phenytoin. The greater the number of feedback serum
concentrations available, the more the precision of the
predictions can be expected to improve (16). However,
the accuracy of the predictions cannot improve indefi-
nitely because some factors cannot be completely con-
trolled. Inappropriate specification of the pharmacokinet-
ic model may be partly responsible for the difference in
prediction accuracy (19). In our study, the naive predic-
tion method was used and therefore high prediction er-
rors were expected. The bias and precision of our pre-
dictions would undoubtedly have improved if one or
more feedback serum concentrations had been used. The
degree of improvement in the predictive performance of
the MM+FO model with one or more feedback serum
phenytoin concentrations needs to be assessed.

Our results are compared with the predictions of dose
and steady state serum concentration using estimates ob-
tained in the study of Vozeh et al (6). They reported the
following parameter estimates: mean Vm = 7.22 mg/
kg/d (interindividual SD, 1.72; CV, 24%) and mean Km
= 4.44 mg/L (interindividual SD, 2.4; CV, 54%). The
Michaelis-Menten model and the NONMEM method
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were used in this study. When using model S1, the %
MPE of —1.32% obtained with our estimates was much
lower than that of 11.4% obtained with the estimates of
Vozeh et al (6). The estimates of Vozeh et al (6) also
tended to overpredict the dose in 69% of cases, and this
may be problematic with phenytoin considering its non-
linear pharmacokinetics. When our estimates were used
the dose was overpredicted in 48.8% of cases. The pre-
cision of the prediction was superior with our estimates
of Vm and Km (17.58% versus 26.05%). The width of
the 95% CI for MPE was narrower with our estimates
(=5.26-2.6 mg/d) of Vm and Km than with that obtained
with the estimates of Vozeh et al (6) (30.33—40.67 mg/d)
(Tables 2 and 4). The frequency of PE greater than 10%
for dose was 58.2% for our estimates, and 70.1% when
the estimates of Vozeh et al (6) were used.

When using model S3, the % MPE of 5.67% obtained
with our estimates was much lower than that of 23.88%
obtained with the estimates of Vozeh et al (6). When our
estimates were used, model S3 overpredicted steady state
serum phenytoin concentration in 54.3% of cases, in
comparison with 30.7% with the estimates of Vozeh et al
(6). The precision of the prediction was superior with our
estimates (64.78% versus 457.53%) (Tables 3 and 5).
The frequency of prediction errors greater than 20% for
serum concentration was 75.3% for our estimates, and
85.5% when the estimates of Vozeh et al (6) were used.
This analysis indicated that predictive performance im-
proved when population estimates representative of a
specific population were used.

In contrast to previous studies that have not taken into
account the contribution of a parallel first-order elimina-
tion pathway, our study showed that the parallel Micha-
elis-Menten and first-order elimination model fitted the
data better than the Michaelis-Menten model considered
alone. Such a model provides predictions that are less
biased when predicting serum phenytoin concentrations.
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