

HEALTH OUTCOMES MEASUREMENT, PHARMACOECONOMIC EVALUATION AND OPTIMIZATION OF DRUG TREATMENT – HOW DO THESE RELATE TO GENERIC MEDICINES?

Praneet Valodia

5 August 2009

- Optimization of drug treatment with generic medicines
- Role of generic medicines as comparators in pharmacoeconomic evaluation
- Role of Real World Data in determining outcomes with generic medicines

OPTIMIZATION OF DRUG TREATMENT WITH GENERIC MEDICINES

BACKGROUND

- Generic phenytoin
- Epanutin^R
- Epilepsy
- Perception of inferiority to original
- Ancient drug

STUDY

The determination and validation of population pharmacokinetic parameters of phenytoin in adult epileptic patients in the Western Cape using nonlinear mixed-effects modeling.

Needed blood samples of phenytoin for PK modelling.

Clinical pharmacokinetic consulting service for phenytoin

8 clinics per week - 2 years

CLINICAL PHARMACOKINETIC SERVICE

Referral by attending doctor Demographic data Concurrent medicines Duration of treatment History of seizures and frequency Description of seizures Alcohol and smoking Admission to hospital Toxicity

Seizure diary Compliance checks Counselling – missed doses Tablet counts Time to Steady state calculation Blood phenytoin samples Determination of Vm and Km Calculation of dose Prediction of new PHT conc. Report to doctor Phenytoin toxicity – withdraw Oral loading dose

PRE-POST INTERVENTION: PHENYTOIN

P. Valodia et al, Benefits of a clinical pharmacokinetic service in optimizing phenytoin use in the Western Cape. SAMJ.1998,88:873-875

TOTAL NUMBER OF SEIZURES EXPERIENCED DURING THE FIRST AND SECOND BASELINE PERIODS AND THE TEST PERIOD (195 PATIENTS)

PERIOD	NUMBER OF SEIZURES
First baseline	667
Second baseline	588
Test period	216

P. Valodia et al, Benefits of a clinical pharmacokinetic service in optimizing phenytoin use in the Western Cape. SAMJ.1998,88:873-875

MEAN SEIZURE FREQUENCY PER MONTH FOR SPECIFIC PERIODS BEFORE AND AFTER THE INITIATION OF THE STUDY (195 PATIENTS)

PERIOD	SEIZURE FREQUENCY PER MONTH		
	Mean	Range	
First baseline	3.62	0 - 48	
Second baseline	3.15	0 – 29	
Test period	1.18	0- 16	

P. Valodia et al, Benefits of a clinical pharmacokinetic service in optimizing phenytoin use in the Western Cape. SAMJ.1998,88:873-875

PERCENTAGE REDUCTION IN SEIZURES

Period	% reduction in seizures
	n = 195
Based on first baseline period	66,4
Based on second baseline period	63,2
Based on the average of first and second baseline periods	64,8

ADVERSE EFFECTS

	% patients
First visit	20,5%
Last visit	3,2 %

DOSE ADJUSTMENTS

	% patients	
	n = 332	
Dose increased	31,9	
Dose decreased	15,1	
No change in dose	53,0	
Dose adjusted	47,0	

Relationship between therapeutic concentration of phenytoin and the percentage of patients optimized at that concentration range.

Therapeutic conc (µmol/l)	% Patients
	n = 171
0,0 – 19	0,0
20 – 39	17,0
40 – 59	31,2
60 – 79	30,7
80 - 99	10,9
100- 119	8,6
120 - 139	1,6

$$Cp_{ss} = -\frac{1}{2} \left[\left(\frac{Vm}{Cl} + Km - \frac{R}{Cl} \right) - \sqrt{\left(\frac{Vm}{Cl} + Km - \frac{R}{Cl} \right)^2 + \frac{4 \cdot R \cdot Km}{Cl}} \right]$$

P. Valodia et al, Factors influencing the population pharmacokinetic parameters of phenytoin using nonlinear mixed-effects modelling in adult epileptic patients in South Africa, Therapeutic Drug Monitoring, 1999, **21**:57-62.

COST SAVINGS

	Price (per month)	Claims (2008)	Total cost
Epanutin	R 234	12018	R 2,8 m
Phenytoin sod	R 53	1965	R 0,1 m
Savings			R 2,2 m

Generic phenytoin effective – optimization is required.

Generic phenytoin is still infrequently used.

Use existing drugs known to be effective

ROLE OF GENERICS AS COMPARATORS IN PHARMACO-ECONOMIC EVALUATION

REGULATIONS RELATING TO A TRANSPARENT PRICING SYSTEM FOR MEDICINES AND SCHEDULED SUBSTANCES (30 APRIL 2004)

Section 14 (5):

DG may request in writing:

Details as to the comparative efficacy, safety and **cost effectiveness** of the medicine or Scheduled substance relative to that of other medicines or Scheduled substances in the same therapeutic class compiled in a manner consistent with guidelines published by the Director-General in the Gazette from time to time.

PHARMACOECONOMIC ANALYSES

(1) Cost minimization

	Cost	Outcome
Original	R 200	↓ 12 mm Hg
Generic	R 100	↓ 12 mm Hg

(2) Cost effectiveness

Do you think that we allocate scarce resources wisely, fairly and efficiently?

Are we ready to ration more extensively?

The role of generic drugs as comparators in PE evaluation will become important.

Need a better understanding of the relationship between cost and the value a generic medicine delivers.

ROLE OF REAL WORLD DATA IN DETERMINING OUTCOMES WITH GENERICS

DEFINITION : OUTCOMES RESEARCH

A scientific discipline that evaluates the effect of health care interventions on patient-related, if not patient specific, economic, clinical and humanistic outcomes.

ISPOR BOOK OF TERMS, 2003

 Opportunity to use RWD to determine outcomes with generic medicines.

• Maximizes the use of all available data

• OR allows tracking and management of individual patients with generic medicines.

FINAL COMMENTS

• Value of generic medicines not fully realized.

- The value of generic medicines as comparators in cost-effectiveness analyses requires more attention.
- Exploit the use of RWD to support the value of generic medicines using outcomes research methods.

